1:30:55 Manu Gopinathan, Malte Loller-Andersen: Reinforcement Learning- Pac-Man | Pydata LA 2019 PyData
48:53 Tom Goldenberg: Kedro + MLflow - Reproducible and Versioned data pipelines at scale | PyData LA 2019 PyData
1:13:11 Hayley Song: Experimental Machine Learning with Holoviz and PyTorch in Jupeyterlab | PyData LA 2019 PyData
1:15:58 Ana Castro Salazar, Pasha Stetsenko: Intro to Data Analysis with Python Data-table | PyData LA 2019 PyData
45:40 Ravin Kumar: Making Data Relevant to Business. It's Harder Than You think! - PyData LA 2019 PyData
47:06 Joseph Kearney, Shahid Barkat: A Python Package for Grappling with Missing Data | PyData LA 2019 PyData
38:51 Michelle Brenner: How to Get Started with Server-less on Google, Amazon & Microsoft | PyData LA 2019 PyData
35:33 Kevin Chrzanowski: Bokeh Maps - Interactive Map for Your Next Web Application | PyData LA 2019 PyData
37:23 Vasily Ershov: Gradient Boosting for Data with Both Numerical and Text Features | PyData LA 2019 PyData
39:25 Avik Das: Dynamics Programming for Machine Learning- Hidden Markov Models | PyData LA 2019 PyData
50:56 Tim Orme: Simplicity For Scale- Analyzing 15 Million DNA Samples With Python | PyData LA 2019 PyData
31:54 Christopher Ariza: The Promise of Hierarchical Indices for Data Beyond 2 Dimensions | PyData LA 2019 PyData
42:09 Dante Gama Dessavre: Open Source is Better Together- GPU Python Libraries Unite | PyData LA 2019 PyData
32:11 Dmitry Petrov: Machine Learning Models Versioning Using Open Source Tools | PyData LA 2019 PyData
28:46 Hao Jin: Accelerate NumPy Data Science Workloads and Deep Learning Applications | PyData LA 2019 PyData
34:31 Sujit Pal: Building Named Entity Recognition Models Efficiently Using NERDS | PyData LA 2019 PyData
24:54 Ivona Tautkute: AI and Fashion- Product Retrieval with Multi-modally Generated Data | PyData LA 2019 PyData
35:11 Fletcher Riehl: Using Embedding Layers to Manage High Cardinality Categorical Data | PyData LA 2019 PyData