1:18:40 Lecture 3: Cantor's Remarkable Theorem and the Rationals' Lack of the Least Upper Bound Property MIT OpenCourseWare
1:18:13 Lecture 5: The Archimedian Property, Density of the Rationals, and Absolute Value MIT OpenCourseWare
1:14:53 Lecture 8: The Squeeze Theorem and Operations Involving Convergent Sequences MIT OpenCourseWare
1:15:37 Lecture 10: The Completeness of the Real Numbers and Basic Properties of Infinite Series MIT OpenCourseWare
1:01:58 Lecture 15: The Continuity of Sine and Cosine and the Many Discontinuities of Dirichlet's Function MIT OpenCourseWare
1:15:36 Lecture 18: Weierstrass's Example of a Continuous and Nowhere Differentiable Function MIT OpenCourseWare
1:14:27 Lecture 19: Differentiation Rules, Rolle's Theorem, and the Mean Value Theorem MIT OpenCourseWare
1:12:13 Lecture 22: Fundamental Theorem of Calculus, Integration by Parts, and Change of Variable Formula MIT OpenCourseWare
1:15:10 Lecture 24: Uniform Convergence, the Weierstrass M-Test, and Interchanging Limits MIT OpenCourseWare